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Intermediate Level Computer Vision Processing
Algorithm Development for the

Content Addressable Array Parallel Processor

University of Massachusetts: F49620-86-C-0041

Quarterly Status Report #3. November 29, 1986

During this quarter we have developed and analyzed a set of seven benchmark problems

for the IUA. These included Hough Transform, Convex Hull, Voronoi Diagram, Minimal

Spanning Tree, Visibility of Vertices in a projected 3-dimensional model, sub-graph iso-

morphism, and the minimum cost path between points in a weighted graph.

These problems are commonly considered intermediate level procesing in many visions

research groups. We have also continued to develop parallel implementations of UMass in-

termediate level processing algorithms, such as Boldt's line merging and Anandan's motion

analysis.

A commercial processor, the TMS320C25, has been chosen as our Intermediate Com-

munications and Associative Processor (ICAP) procesing element. The TMS320C25 has

the advantages that it is a five million instruction per second signal processing unit with a

fast multiplier and software support for fast floating point operations. It also has a built-

in 5 Mb/S serial port that will interface well with the intermediate level communications

network.

We have also been exploring a set of group theoretic network topologies with respect to

the communication needs of intermediate level processing. This has required us to analyze

the classes of communication needed in each of the algorithms we have implemented.

During the next period we will be revising the CAAPP level simulator and transporting
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it to the Texas Instruments Explorer Work Station. We will also hegin to implement an

ICAP simulator on an Explorer that has been augmented with the TMS320C25 processor.

A summary of the fiscal status of the grant is:

Amount currently provided for the contract $197,000

Expenditures and commitments to date 65.926

Estimate date of completion of work 2,'14/88
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Intermediate Level Compuler Vision Processing
Algorithm Development for the

Content Addressable Array Parallel Processor

U niversity of Massachusetts: F 19620-86-C-004 II
Qiiarterly Stattus Report No.,

March I. 199q7

During this quarter we have finalized the low to intermediate level interface
hardware design for the lirA. We have also b)'en examining various network topolo-
gies for communications within the intermediate level of the IUA. At the minimum
we will support a mesh with an overlayed hypercube. However, we are looking
into a fully programmable network topology that will allow us to experiment with
different processor interconnection schemes.

We have also installed our Texas Instruments Explorer workstation with an
Odyssey multi-processor board. The Od 'vssey contains four of the TMS32020 pro-
cessors that are upward compatible to the f%15320('25 processors that will be used
in the interniediate level of the WA. The (dlssee board will allow us to perform e

high speed sirmulations of the low and intermediate levels of the IlA, and will be
especially useful in simnuilating the interaction,; hetween those levels. r

01

Because the Odyssey is a beta-tet prod iit, we spent a significant amount of 1.

time debugging the hardware and software after it was first installed. However.
simulator development is now progressing qjuiukl.: the low level simulator is nearly . a

debugged and we expect to co'1 plete the interntiediate level and interface simulators a

in another month or so.

Once the simulator is com pleted, we will Iwgin to build the IUA software sipport
anid development environment on top of it. We will also re-impletnent our existing
intermediate level algoritlinis on the Odyssey sinmilator.

In addition to the Odyssey-based simulator, we are implementing a VAX-hased
simulator in C that will be transportable to other qites, and which will interface to
the [TMass VISIONS software environment. At the end of this reporting period.
the low level portion of this ;irnuiator was coim plete. Further developtmnt will take
place in the next. quarter.

We re-coded the seven T).*\ RPA benchmniark tasks (initially implemented in the
preceding quarter) to take advanta , of earlos W1 \ features that were not available
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in our old simulator, but which will t)e precent in fihe hardware. This provided
significant improvements in our timings (a copy of tlhe final benchmark result table

is attached).

We are also working with DARPA and Azriel Rosenfeld at the 11. of Maryland
to develop a new set of benchmarks that will test performance on an integrated
image interpretation task. 'rhis new benchmark will focus on the issue of interaction

between the low and intermediate levels of representation or abstraction in computer
vision.

A summary of the fiscal status of the grant, is:

Amount currently provided for the contract $197,000
Expenditures and commitments to date $108,022
Estimated date of completion of work February 14, 1988
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Measuring Communication Structures
in Parallel Architectures and Algorithms

Steven P. Levitan

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

This work focuses on analyzing metrics for communication structures in par-
allel computer architectures. We review several measures or "metrics" of the in-
terconnection networks of parallel architectures and we evaluate these metrics as
predictors of machine/algorithm performance. We have done this by simulating
six tasks on each of eight architectures and comparing the metric-predicted rank-
ing of the machines/algorithms with the actual time complexity of the algorithms.
We show that, in general, accepted metrics of machine architectures do not per-

form well as predictors of run-time performance. However, the performance of
some parallel algorithms running on parallel machines correlates very well with
the performance of other parallel algorithms on those same machines. We propose
a set of tasks to be used as the beginning of a performance suite for evaluating the
communication structures of parallel architectures.

1. Introduction

Parallel processing is not new. However, only recently have the interprocessor
communication structures necessary to support parallel processing been recog-
nized as a key issue in the design of parallel machines [50]. While there have
been many attempts to classify and evaluate different communication structures
[20, 36, 30], a real theory of parallel, or communication, complexity has not yet
emerged (38].

Such a theory would allow computer architects to evaluate new ideas in par-
allel computer organization and perform comparative analysis between existing
and proposed designs. It would give programmers a method for predicting the
performance of parallel algorithms running on different parallel machines and a

way to judge the performance of algorithms running on different architectures, in

terms of optimality for each particular architecture. Just as the current theory of
algorithmic complexity is a basis for algorithm design and analysis, an extension

Iq
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of this theory to parallel algorithms and parallel machines will form a basis for
parallel algorithm design and analysis techniques.

Many models for parallel computation have been proposed. Borodin and
Hopcroft [9] give a hierarchy of models which could be extended to include The
parallel comparison model of Valiant [54], Schwartz's Paracomputer [441 and
Thompson's [51] and Vuillemin's [55] models of VLSI. Galil and Paul [21] also
give a comparative analysis of models.

Models, however, are not real machines. Computer architects and program-
mers are concerned with how accurately models predict the abilities of real ma-
chines. Machines that can be built would approach the abilities of any model with
a time penalty which is some function of the size of the system. How much of a
time penalty is not always clear. For example, Schwartz [44] claims the Ultracom-
puter will be able to simulate the Paracomputer (and all simpler models) with
only a factor of log(N) time penalty. He is using about N * log(N)2 hardware to
perform routing between a set of N processors and N memory registers. In the
notation we describe below, this is a Oi(log(N)) instruction time penalty. This
penalty is, itself, more than the running times of some of the algorithms we want
to discuss. This makes it difficult to predict the running times of real algorithms
on real machines.

The problem is that a model of a parallel computer for a theory of parallel
complexity must account for the time penalties involved in communication. How-
ever, these time penalties are different for different parallel architectures. Since
we clearly do not want a different theory of complexity for every parallel archi-
tecture, we must develop a theory which explicitly addresses the differences in
communication structures of different architectures.

In an attempt to solve these and other problems, researchers have proposed
..several measures of communication structures. Some possible measures that have
been proposed are: Diameter, Bandwidth and the Average Distance between
every two processors [35], Message Capacity [26], Average Message Delay, Average
Message Density, and Connections per Processor [581, the time to perform a
Bitonic sort, the number of mapping functions performed by the network, the
number of bijection functions performed by the network, and the time it takes for
a network to simulate other networks [46,47].

7Not all of these measures have been used in the context we are proposing, as
a tool for complexity analysis, and not all of them would be appropriate for that
purpose. More importantly, rather than some measure of the "raw power" of the
structures, we are concerned with characterizations of the structures that will give
us some insight into the way they will support the communication needs of real
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algorithms. Therefore, the best measures are the ones that help us predict algo-
rithm performance. Measures (or metrics) which predict algorithm performance
could then be used in a general theory of parallel complexity.

There is no reason to believe that any of the proposed metrics are better
than any others. Moreover, very little has been done to verify the quality of
the metrics themselves. To address this issue, we have chosen a set of metrics
t.o evaluate on the basis of how well they can be used to predict the abilities of

different multiprocessors. The metrics we choose to evaluate attempt to capture
those aspects of the multiprocessor communication structures which will directly
affect algorithm runtime performance.

The research reported here consisted of several steps [33,34. The organiza-
tion of this paper follows our work. We first present the assumptions or "ground
rules" for analyzing parallel machines and algorithms used throughout the work.
We next select a set of multiprocessor architectures based on the communications
structures of those architectures. We then consider a set of metrics for those
structures which might be useful to capture their communications abilities. Next,
we examine the runtime performance of several classic tasks on the different ar-
chitectures. At the same time, we use the metrics to predict the performance of
the machines on those different tasks. We then compare the runtime performance
of the algorithms and the predictions of the metrics.

The rest of the paper evaluates how well the metrics can be used to capture
the abilities of the architectures, and therefore predict their relative merits on
different algorithms. The result is an evaluation of the metrics themselves, as
tools to capture the nature of of machine/algorithm interactions. Besides simply
evaluating the metrics as predictors, this work is also an examination of the way
algorithms "fit" on different parallel architectures. We have tried to reveal the
relationship of the communication needs of algorithms to the abilities of machine
architectures. Finally, we conclude with a proposal for a set of benchmark rou-
tines or a performance suite of algorithms which we believe are more suitable for
evaluating multiprocessor architectures.

Thus, the goal of the work is twofold: To characterize parallel algorithms
in terms of their communication needs and to select and verify useful measures
that can aid in the analysis of parallel algorithms. These characterizations and
metrics are viewed as necessary precursors to a valid theory of parallel algorithm
complexity.

2. The Model

We have chosen to use a version of the network model [41] for our research. We
are trying to be "architecturally accurate." When we discuss machines, we would

3
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like to eliminate as much as possible the hidden costs of converting these ideals to
practical systems. We are doing this because we are seeking to evaluate metrics
that will be used on real machines. As much as possible, we should consider
architectures that can be realized directly. In particular, we are not considering
any common-memory based architectures.

Our model assumes that the time for messages to travel along the arcs con-
necting processors is very small compared to the time to put the message on the
arc, or to take it off at the other end. However, we are very restrictive about the
abilities of the processors to handle messages. We charge one unit of time equal
to the execution of an instruction for each "send" or "receive" operation.

More importantly, we do not assume that the processors can detect messages
on their input arcs "for free." Each input must be tested which also takes a unit
of time. In a hardware sense this means we are not allowing interrupts. Although
hardware for arbitrating interrupts is well understood, the arbitration mechanism
and the vectorization mechanism require hardware and gate delays, which grow
as the system grows. We have decided to remove that complication from our
analysis. As we show later, this means that our Fully Connected machine is
weaker in our model than in other models. Routing is not a trivial problem since
arriving messages are not immediately known at each processor.

2.1 Time Complexity of Communication and Computation

In addition to the instruction level delays for communication, we are also
interested in considering the time for gate delays and wire propagation delays
in a certain restricted sense. We are concerned with comparing operations that
might take different amounts of time on different architectures. For instance we
might need to contrast a single bit boolean OR operation on one architecture,
with an arithmetic ADD on another. To allow for such "apples and oranges"
comparisons, we need to have a consistent measure of how long operations take.

For serial machines the actual time to perform operations is not an issue and
it is often consciously ignored by theorists. "An add is an add is an add," at least
asymptotically. However, in large systems the time to move data around cannot be
ignored. More importantly, when analyzing parallel algorithms we must contrast
the time to move data between processors with the time to compute. Since we
are talking about diferent degrees of sophistication of our processing elements,
we must also separate out the difference in complexity between a "Gate Level"
operation and a "Fetch Execute Instruction" level operation. As part of the
model, there must be a way to compare different notions of computation with
each other and with equally different implementations of communication.

There is no agreement about uniform time measures for communication costs

4

-



in parallel models of computation. Even the propagation delays in different types
of wires have been dealt with differently in the past. For instance, fabricators of
silicon circuits claim that the delay in silicon wires is intrinsically proportional
to the length of the wire squared; wires to them are delay lines. Designers of
integrated circuits however, use length as a rule of thumb. Using repeater circuits,
Thompson [531 and Mead and Conway [38] claim a logarithmic delay. With
other assumptions, researchers have different results. G. Bilardi, M. Pracchi, and
F. P. Preparata [7] propose three different models for three special cases of signal
propagation in VLSI silicon: 0(1), O(L), and O(L). They conclude that for
most current technology we can use 0(1).

Of course, things are no better when we try to decide gate delay time. Is it a
function of the number of inputs to a gate? Is it a function of the driven load? Is
it a function of the technology? The answer to all these questions is "Yes." For
operations, or instructions, we have no better solution. After all, machines are
made out of wires and gates.

We propose the following resolution to the above problem. If we are consid-
ering CPU operations or instructions we use a subscript 0j() (or none); if we
are considering gate delays we use a subscript g0 () and wire delays call for a
subscript of O0() . We use a similar convention for the lower bounds notation:
Oi,, 11go(, fA.(). We will use the three subscripts where appropriate in the
analysis of our algorithms. This frees us to pursue our analysis without regard
to technology-dependent conditions of the relationships between these domains.
Also note, that we use log(z) to mean logarithm to the base 2 of x, ln(z) to
mean the natural logarithm of z, and z, y to mean z X y.

3. Machines, Metrics, and Algorithms

For our work in testing metrics, we have chosen a representative sample of cur-
rent or proposed parallel architectures. We consider one Single Instruction stream
Multiple Data stream (SIMD) machine, the Content Addressable Parallel Proces-0
sor. We consider five 'graph-structured" machines of increasing complexity: the
Star, Linear, Tree, Shuffle, and Full networks. We also include two unique designs
of our own, the Broadcast Protocol Multiprocessor, and the Fully Interconnected
with Content Addressable Parallel Processors machine. The machines have been
selected on the basis of their broad range of communication characteristics.

We have chosen the metrics of Diameter and Bandwidth based on Lint [35],
Path Count based on Horowitz and Zorat 126] Thickness based on Gannon [22],
and our own measure, Narrowness [33]. These metrics span a range of complexity
from simple measures to more sophisticated graph theoretic properties of the
network.
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The algorithms have been selected by three criteria. First, we have taken fa-
miliar, well studied, and well understood serial algorithms and considered them in
the parallel environment. Second, we have limited the domain of our algorithms to
combinatoric algorithms. These are integer arithmetic non-numerical algorithms
generally concerned with decisions rather than numbers. Third, we have been
concerned with sub-algorithms or "kernels." These are useful algorithms which
occur often in larger programs.

3.1 Machines

The architectures we have chosen span the taxonomy presented by Anderson
and Jensen [I. We give the Anderson-Jensen classification for each machine along
with a brief description.

3.1.1 The Content Addressable Parallel Processor (CAPP)

Single Instruction Multiple Data (SIMD) architectures [17) are based on the con-
cept of a single central controller broadcasting instructions to all the processors in
the machine. Each processor has its own data which it operates on in parallel with
all the other processors of the machine. The Content Addressable Parallel Pro-
cessor (CAPP) architecture is like a SIMD machine with simple procesors 118].
The CAPP does not directly fit into the Anderson-Jensen classification (Figure
1).

COMPIRAND

MASK RESPONOD!

N~liK
all~l

$INEoNOSI [

Figure 1. Content Addressable Parallel Processor (CAPP)
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In a CAPP both instructions and data are broadcast. The processors, or pro-
ceasing elements, can operate on both their own internal data and data broadcast
by the central controller. This allows for such operations as comparison of values,
global updates of values, and arithmetic operations where one of the operands is
a brodcast value. Each processor of the CAPP can save the results of these op-
erations and conditionally execute future operations based on these results. The
results are kept in boolean flag registers called 'responder bits."

Another important feature of the CAPP is the ability of the processors to
report their results back to the central controller. There are two types of summary
reports. One is a simple existence result: Are there any processors with responder
bits set? The second is a count of the number of processors with their responder
bits set.

A design for a VLSI CAPP is proposed by Weems [56]. A survey of CAPPs
and reliated architectures is provided by Foster [i9J and Weems [571. The CAPP is
interesting primarily because of the broadcast and response circuitry. Also, it has
reasonably little processing power at each "processor," but it is still a powerful
parallel processor.

3.1.2 Star Network

The Star machine is made up of a group of processors (Spokes), each connected
to a single central, or Rub, processor. The distance between any two processors
is short (two) but the number of simultaneous messages that can be transferred
is only one. This is an Indirect, Centralized Routing, Dedicated Path (ICDS)
machine (Figure 2).

3.1.3 Broadcast Protocol Multiprocessor (BPM)

This machine is like a Star Network, except that the Hub is not a processor.
Rather, the Hub is a single register that has the property that all processors canI
read its contents at once. All Spoke processors can attempt to write at once into
the register, but only one (chosen at random) will succeed. This structure also
models the communication abilities of networks like the Ethernet [391. Details
of this architecture are in 131, 321. Depending on the central resource, this is a
Direct, Shared Path Global Bus (DSB) or an Indirect Bus with a Central Switch
(ICS) machine (Figure 3).

Figure 4. Linear Network

7
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Figure 2. Sta~r Network

Figure 3. Broadcast Protocol Multiptoceior (BPM)

3.1.4 Linear Ni!eok

This machine i8simply a group of procmors interconnected in a linear f,,shion.

There ia. o end aroud wrap. This architecture is Intzuin because it hase a

aredistance between th. two end procmoru, but the number of simultaneous
mmagm Is the network can also be large. This is a Direct, Dedicated Path Linear
(DDL) mainen (Figure 4).
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3.1.5 Tree Network

This Machine is a group of processors connected in a binary tree. There is a
distinguished Root and Leaves. This architecture has been proposed by several
authors since the communication distance is shorter than it is for the Linear
network and the number of simultaneous messages it can support is better than
the Star network. This is an Indirect, Decentralized, Dedicated path, Irregular
(IDDI) machine (Figure 5).

Figure 5. Tree Network

3.1.6 Shuffle Network

This interconnect pattern was originally proposed by Stone [49] as a method for
interconnecting dynamic memories. In our machine, each processor 1 ... N - 1
is connected by four unidirectional links. Processor I can send to processor
(2 * 1) mod N, and processor (2 * I + 1) mod N. N must be a power of two.
This can be thought of as a network where each processor is the root of a binary
tree, connecting all processors. This is an Indirect, Decentralized, Dedicated path,
Regular (IDDR) machine (see Figure 6 for numbering conventions).
3.1.7 Fully Interconnected Network (Full)
In this machine, every processor can communicate directly with every other pro-

cessor. Then are N2 bidirectional links. However, each processor can send and
receive only one message at a time. This is often considered the best possible
interconnection scheme, even though it is expensive. This is a Direct, Dedicated
path, Complete (DDC) machine (Figure 7).

3.1.8 Fully Interconnected with CAPP (Full with CAPP)

This machine has the feature that each processor has its own CAPP as part of

9Y
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Figure 6. Shuffe Network

2%

Figure 7. Full Network

its I m DWY. Furthermore, we let each processor's communicato links end
in a word of the CAPP of every other processor. Thi allowu each processor to
broadcast to every other proceor In *unit, time (Figure 8).

The Full with CAPP machne is constructed by having each processor share
a different word of CAPP with every other processor. This means that when one
processor broadcasts to all words of its CAPP, the value appeare in one word of

10
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Figure 8. Full with CAPP Network

each of the other processor1. CAPP@. Conversely, when one processor searches its
CAPP it is really examining one word from each other processor's CAPP. Of the

N2 words (Wi, A), each in written into by processor i and read and searched
by processor j. This could be extended to allow both procesors i and j to read
and write the same word. However, to allow both processors to search the same
word would imply N response bits for each word. Our algorithms do not need
that capability.

The Full with CAPP architecture is useful in cases where a regular CAPP
would need to seriali operations. CAPPs, being SIM machines, need to serial-
ise at evwery decision point in an algorithm. There i only one controller. If there
is a branch point based on a data value in the words of memory, the controller
needs to 'turn of' some words, perform oue case, then go back and deal with the
other case. Our CAPP artu has a stack of response store bits to facilitate
that operatio. This simplifies propammln , but does not necessarily speed up
the algorithms. For instance, in the sorting task a traditional CAPP needs to
And the X-th largest value for K l 1... N. The operation is serialized since
the CAPP cannot find both the 17th and 31st largest values at the same time.

The Full with CAPP machine, having V controllers, can perform the ranking
operation in parallel.
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3.2 Metrics

Two relatively simple metrics that have been proposed for measuring the com-
munications abilities of parallel architectures are Diameter and Bandwidth [35].
Diameter can be informally described as the worst case time for one message to
go from one node of the network to some other node. Bandwidth is the maximum
number of messages that can be sent and received in the network at once.

We want our definitions of Diameter and Bandwidth to capture our intuitive
notions of 'How fast can we get a message from one end of the network to the
other?" and "How much communication can be going on at once?" We would
also like the definitions to be both precise and general enough that we can apply
them to different architectures than the ones we are considering in this work,
without resorting to intuition for every special case. While these goals are easily
realized for Diameter, we will see that it is more difficult to formulate a satisfactory
definition of Bandwidth.

3.2.1 Diameter
We define Diameter empirically in terms of a set of experiments. These experi-

ments proceed as follows: We have each processor in the network send a message to
every other processor, one at a time. The worst case delay among the N * (N - 1)
trials is the Diameter of the network. Delay is measured in units of receive-send
(forwarding) time Oj() , gate delays 0,() , or wire length 0,.(), as appropriate.

3.2.2 Bandwidth

There are two problems that arise when we attempt to formalize our intuitive
notions of Bandwidth. The first problem is that there is a difference between
the number of messages that can be active in a network and the number of mes-
sages that the processors can handle. The second problem is that we must decide
whether to count broadcast messages with the same content as one message or sev-
eral. Examining the behavior of infinite size networks with different size branching
factors aids us in resolving both problems.

We first address the problem of the difference between the number of messages
that could exist in the communication pathways of a network and the number that
can be processed by the system. Consider the case of a message originating at
the root of an infinite binary tree and passed down from parent to children such
that it is broadcast to all nodes of the tree. The number of nodes, N, which have
seen the message at any given step time, S, is the sum of the first S Fibonacci
numbers, F(S). The sum is itself a Fibonacci number: F(S + 2) - 1 1291. The
reason for this growth pattern is the forwarding rule of our model which implies
that a processor can only forward one message at a time. In a binary tree the
number of new nodes at each step is the number of nodes which are one step old,
plus the number of nodes which are two steps old. Three-step old nodes have sent
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messages to both their children and therefore do no further work. The growth
is exponential. F(S) is about equal to Os/v5, where 0 is the "golden ratio"

defined to be (1 +

For a trinary tree the nodes stay active for three time steps, for a quaternary
tree for four time steps, etc. For an infinitely branching infinite tree all nodes
stay active. Therefore, each time step doubles the number of active nodes. For
an infinitely branching tree, it is our forwarding rule which prevents us from
concluding that an infinite number of messages could be sent throughout the
network in the first few time steps. The number of active nodes = 2s -1. Even
in the fully connected architecture it takes eight time steps to broadcast a single
number to 128 processors.

The preceding argument demonstrates why we believe that Bandwidth ought
to be defined in terms of the number of messages that processors can handle rather
than simply the number of messages that can be active in a network. In fact, it
substantiates our intuitive notion that Bandwidth is not simply the maximum
number of messages that could "live" in the network at any given time; but
rather it must be some function of the number of messages that can be generated
or received by the processors in the network at a given time. Under the definition
of Bandwidth that we give below, the maximum possible value of the Bandwidth
of an N processor machine is N.

We now turn to the second problem that arises when we attempt to formalize
our definition of Bandwidth. Do we count copies of identical messages as one
message or as individual messages? Put another way, do we count the number of
messages sent, or the number received?

Again we turn to the extreme case of an infinite number of processors. If
all processors are listening to an infinitely long broadcast bus, and one processor
sends a message, then they all receive a copy of the message "immediately." We
can say that there are an infinite number of messages received, or multiple copies
of one message, or that the message moves down the wire with speed 0,,,() and
therefore takes infinite time to propagate. If we allow infinite buses to hold more
than one message, we could claim that the messages need not even be multiple
copies of the same original, and thus we could use the 0.,() propagation delay
as a virtual buffer. We could even pipeline messages. The infinite broadcast bus
does not resolve our dilemma.

if, however, we look at an infinite receive bus, a 'wired OR" for example.
only one message can be carried on the bus. It can be a message of consensus,
a Some/None response, but it is only one datum of global information. The
propagation of the message on this bus must be at least f.(), but it is only one
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message. Therefore, for the purpose of symmetry (and simplification) we have
decided to take the Bandwidth of both broadcasting and receiving buses as one
message per unit time, 0,().

Having considered the two problematic issues regarding Bandwidth, we are
now able to state precise definitions for Diameter and Bandwidth. We define
Diameter as the worst-case time to get a message from one processor of a network
to another. We measure Diameter with the "time trials" experiment given above.
We assume there is no other computation or communication in progress in the
network at the time of the experiment.

We define Bandwidth as the total number of messages that can be sent or
received by processors in the system in one unit of time (Oi(1)). We make the
further restriction that a communication on a broadcast or receive bus counts
as one broadcast, or receive, message respectively. Therefore, Bandwidth is the
maximum number of unique messages that can be generated or consumed in unit
time in a network.

The first two columns of table 1 gives the Diameter and Bandwidth of the
architectures we are discussing. We can see that the machines are not completely
differentiated based on these two metrics. The difference between the Star and the
BPM is that the BPM uses broadcast messages, while the Star does not. The Tree
and Shuffle networks differ in that the Shuffle has no root node with its associated
bottle-neck. The difference between the Full and the Full with CAPP machines is
that the Full with CAPP uses broadcast and report buses for its communic *ions.
In the next section we examine more sophisticated metrics which hope to capture
these distinctions.

3.3 Message Capacity Metrics

Next we examine metrics for those structures that characterize how well the
parallel machines support multiple message transfers between arbitrary processors
in the network. We want to judge the ability of the network to handle the "typical"
communication patterns that will be encountered during the execution of "typical"
programs. Even though these metrics seem more general and less precise than
Diameter and Bandwidth they do capture important properties of the networks
and for some problems they can be used for deriving Lower Bounds. These
"message capacity" metrics are based on an examination of message density along
each of the interconnection paths between processors in the machine. They give
a figure of merit for the message capacity of the network. There are several ways
of calculating message capacity.

For comparison, we have chosen three different measures of message capacity.
The measures are Path Count, Narrowness, and Thickness. Path Count can be
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Table 1. Metrics of the Architectures

Machines Metrics

..... Paths ......

Diam. Bndwdth. Total Avg. W- C Thick. Narr.
Serial 1 1 1 1 1 1 1

Linear N N N3  N2  N 2  1 N

Star I 1 N 2  N N 2  N 1

Tree log(N) N N 2 log(N) N log(N) N 2  1 N

Shuffle log(N) N N 2 log(N) N log(N) N log(N) N 1

BPM 1 1 N 2  N N 2  1 N

CAPP 1 1 N2  N N 2  1 N

Full 1 N N2  N N N2  1/N

Full/CAPP 1 N N2  N N N2  11N

thought of in terms of the number of paths through each node of the network, or
equivalently the number of messages each node must handle in the task of each
processor sending one message to every other processor. Narrowness measures
the worst-case bottleneck which occurs when one partitions the network in all
possible ways. Thickness is a refinement of Bandwidth; it is based on the task of
each processor sending one message to one other processor in the "other half" of
a partitioned network. The bisection width is minimized for all partitionings of
the network into two parts, with half of the processors in each partition.

3.3.1 Path Counting Message Capacity

Our first measure is an extension of the ideas in Horowitz and Zorat [26]. They
use the number of communication paths which each processor in a network is
responsible for as a measure of the communication overhead in the system.

We define a Path in terms of the particular task of every processor sending
one message to every other processor in the network. This generates N * (N - 1)
original messages. We make a distinction between original and total messages.
For most machines, messages must be forwarded several times to get to their
destinations. Each time a message is forwarded it is counted again.
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We say there is a Path through a processor, X, if processor X is the source
or destination of a message, or if processor X forwards a message from some
processor, Y, to some processor Z. The number of paths through X is the
number of messages (one to every other processor) that X creates, plus the
number of messages (one from each other processor) that X terminates, plus the
number of messages that X forwards for other processors, which are also sending
one message to every other processor.

Using these rules we can calculate the total number of messages involved in the
task of each processor sending to every other processor, and therefore calculate
the number of paths that each processor must handle. We calculate the total
number of messages, the average number of messages each processor must handle,
and the number of messages the "worst-case" processor must handle.

3.3.2 Congestion based Message Capacity

Another measure, "Narrowness" [33] gives a more direct measure of the congestion
to be expected in a network. The idea here is that for algorithms with lots of
message traffic, the congestion dominates all other interactions in the system.
Therefore, a measure which abstracts out that single property of the network is
a good metric.

We calculate the Narrowness of the network as follows. We partition the
network into two groups of processors A and B where the number of processors in
each group is a and b respectively and assume b < a. Now we count the number
of interconnections between A and B, call this i. We find the maximum value
of (b/i) for all partitionings of the network. We call this measure the Narrowness
of the network.

3.3.3 Worst-Case Bandwidth as Messaxe Capacity

Gannon [22] uses a modified version of Bandwidth to give a figure of merit to
networks. His work is an extension of the ideas used in VLSI complexity theory
[52]. The basis of the measure is again that we partition the network, this time
into two equal halves. Now we assume the underlying task is for each processor in
one group to send a message to another processor in the other group. We compute
the normalized time for this task. Gannon calls this the "Bisection Bandwidth."
To avoid confusion we will call it the "Thickness" of the network.

Gannon shows how we can use this measure to give lower bounds for certain
problems. Assume P is a problem for which parallel algorithm A provides a
solution on a given architecture. If A needs to send k messages between two
halves of the network during its execution and the Thickness of the network is T,
then the communication part of the execution of A is bounded by k/T. If, in
addition, the Numerical part of the execution of A has S steps and the network! 16



has N processors, then the entire execution time is bounded by:

Time > S/N + k/T.

Gannon examines a class of algorithms based on "Divide and Conquer" with a
Shuffle Exchange communication pattern. Of course, not all algorithms can be
characterized by this exchange operation and determining k for other solution
techniques is somewhat tricky. This does not negate the value of Thickness as
a measure of machine communication capabilities. It is a valid measure of the
different interconnection structures' abilities to support message passing.

We should note that for our machines, Thickness is proportional to N/ Nar-
rowness. This is a consequence of the fact that the (b/i) value is maximized when
the networks are partitioned in half. This is not generally true for all networks.
Networks made up of tightly interconnected sub-networks, loosely interconnected, '

generally will not have their narrowest point at the middle of the network. Rather,
it will be between some sub-network and the rest of the network.

3.4 Algorithms

The algorithms have been chosen to represent a broad range of complexity.
They are also important "kernel" algorithms which occur as sub-problems in larger
programming tasks. We explain our choice of algorithms and the algorithms them-
selves in the following sections. broadcasting, reporting, extrema, and packing
are discussed first. Then we discuss sorting and the minimum spanning tree. We
briefly give our motivation for selecting these algorithms and review some related
work in the following sections.

We have deliberately chosen communication intensive problems for use in
studying the metrics. This is despite the widely accepted belief that multiproces-
sors, in general, are more efficient when the ratio of communication to computa-
tion is low [30, 27, 24]. Jones, for example, calls the amount of computation done
per communication the "grain size" of the tasks. She recommends that program-
mers try to keep the grain size of their parallel algorithms high. In other words,
one would like to have the "semantic content" of the communications as high as

possible. That way each message would be maximally useful to the completion of
the total algorithm.

For our purposes in assessing the metrics, however, it is more informative to
consider small grain size algorithms. There are two reasons for this. First, since
our interest is on the effect of different network organizations on system perfor-
mance, we want to "overload" the network as much as possible, i.e., stress the
multiprocessor on the side of communication rather than computation. We have

done this in order to clearly expose the impact of organization on performance.
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Second, it is often possible to trade communication time for computation time,
and in general that is the kind of tradeoff that will b- done by creators of parallel
algorithms. But in our analysis, we do not want the possible tradeoffs to compli-
cate the issues of communication behavior. The simple algorithms were chosen
expressly to keep such tradeoffs from obscuring the issues of communication be-
havior that are our primary concern.

The first four computational problems that we address in this section are rel-
atively simple. Broadcasting is the problem of sending one value to all processors
in the network. Reporting is the problem of determining if any processor has a
particular value. Broadcasting and reporting are essentially pure communication
algorithms; there is virtually no computation component to the algorithms. Max-
imum finding is finding the largest value from a set of items distributed one to a
processor in the network. Packing is the problem of squeezing null values out of
a sparse array of item values. The items are distributed throughout the network,
and the algorithm must preserve the relative order of the non-null items. Max-
imum finding and packing involve slightly more computation than broadcasting
and reporting, but they are still predominantly communications problems, with
very minor computational components.

Sorting and computing the minimum spanning tree of a graph have been cho-
sen as more complex tasks which also need a large amount of communication. For
both these tasks our algorithms are based on initial conditions of each processor
having one element of the input set. This might not always be the fastest way
to compute the result, however we still want to use communication rather than
computation whenever possible.

3.4.1 Broadcasting.

Broadcasting is the task of sending a single message to all processors in the mul-
tiprocessor system. This is a basic operation for all multiprocessors. It is often
provided by the hardware architecture itself, as in the case of the CAPP and
the BPM machines. Even when it is not provided in hardware, it is a necessary
function and must be somehow implemented to allow the processors to at least
initiate and terminate tasks. Many parallel algorithms use broadcasting as a sub-
algorithm in their larger computation. For example, in several of the minimum
spanning tree algorithms we need to tell every processor which node of the tree
was chosen after each iteration of the algorithm.

For those machines that do not support broadcasting directly in hardware,
the time that it takes to perform the operation is critical. As we see in later
sections, it is often the most limiting aspect of the computation. Jordan [281 and
Nassimi and Sahni [40] present algorithms for broadcasting in the Finite Element
Machine and a SIMD square grid machine respectively.

18

. . . .. . . . " " " "" "" '" "". "' ' " " " ' ' " " "'" " .



3.4.2 Reporting

The purpose of reporting is the opposite of that for broadcasting. It is to gather
information about the state of the network to a central location. In some cases the
result is available to all processors as a side effect of the algorithm. The algorithm
gathers one bit of information, reflecting existence of a particular value in the
network. The demands the algorithm makes on the network are different than for
broadcasting since there is some computation involved, logically OR'ing partial
results before sending a new result on to its next destination. Even though this
is a rather trivial amount of computation it imposes a synchronization constraint
on the algorithm.

It is also worth noting that, aside from buses, Full interconnect structures
are optimal for broadcasting problems. However, they are not optimal for fan-in
tasks like reporting. For fan-in, binary (or trinary) tree structures are optimal
[33]. Of course, the Full interconnect can just use the subset of its connections
which make up a binary tree.

For broadcasting, the order that data flows around the network is irrelevant.
Even redundant copies of the data value were not a problem. For reporting things
are different. Each processor must wait for any partial values it is responsible for
combining to arrive before it sends its results on. The delay due to synchronization
is a coefficient on the time of the algorithm. Although it has no effect on the
asymptotic running times of the algorithms, the difference is important.

3.4.3 Extrema (Maximum or Minimum) Finding

Extrema, or maximum, finding is the first "non-trivial" algorithm we explore. It
is generally not available as a hardware operation in multiprocessors. It is an
extension of reporting and can often be implemented as multiple calls to a report
operation. It is also a useful sub-algorithm, particularly in algorithms where the
multiprocessor is performing a distributed search operation. Each processor can
speed up its local processing by having the best value found anywhere available
for its local processing.

Maximum finding on multiprocessor architectures has been widely discussed.
Hirschberg 1251 and Chang and Roberts 112) discuss circular, or ring, architectures
and give O(N * log(N)) algorithms. Kung [30] describes algorithms on systolic
arrays and trees. In trees, extremum can be found in O(log(N)). Bokhhari [8]

presents an 0(n 2 / 3 ) algorithm for a square, n by n array augmented by a global
bus. For a common memory model, Valiant [54] and Shiloach and Vishkin [45]
present algorithms that have the surprisingly low running time of O(log(log(N))).
However, they do not discuss memory contention problems.
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3.4.4 Packing
Packing is the task of moving data from higher numbered processors to lower

numbered processors that have space in such a way that the relative order of
the data among processors is unchanged. This is often used as a sub-algorithm to

sorting and searching problems. As an example, parallel distribution sorts use this
sub-algorithm. Packing is also a way to increase the locality of data in distributed
processing algorithms. The multiprocessor can "shift down" related data so that
the processors which have the data are physically near each other. Schwartz [441
presents packing on the Ultracomputer and on perfect shuffle machines.

Besides its applications, packing is interesting from a theoretical point of view.
The average amount of data to be moved is less than that for sorting (or routing),
and the average distance for data items to move is inversely proportional to the

number of data items. Unlike routing, there is no way to know in advance where
the data items are to end up since we do not know how many holes exist in the
system. But, unlike Sorting, we do not have to do any comparisons since the data
is already in order. The serial complexity of packing is fli(N) since each value
must be examined to see if, indeed, it is a hole.

There are several types of parallel algorithms for packing. The first are simply
extensions of the serial algorithms. For both the Star Pack and the BPM Pack
algorithms the Bandwidth of the network only allows for the disposition of one
hole (or one non-hole) at a time. There are also "data migration" algorithms,
where the active processors move data into non-active neighbors, or non-active
processors ask for data from their active neighbors. Running times for these
algorithms are dominated by the Diameter of the interconnect, as illustrated by
the Linear Pack and the Tree Pack algorithms. Our Full Pack and Shuffle Pack
algorithms are "swapping" based algorithms. Values and holes are exchanged in
a pre-specified pattern based on the shuffle pattern.

3.4.5 Sorting

After examining extrema finding and packing, it is natural to examine sorting on
a multiprocessor. Baudet and Stevenson (4] present sorting on linearly connected
processors in O(N) time. Kung, Valiant, and Shiloach all extend their discussions
of Extrema Finding to include sorting. Trees and one dimensional systolic arrays

can sort in O(N). Shiloach sorts in 0(log(N) 2) with common memory. Dewitt
[15] and Thompson [531 survey results in parallel sorting. The most recent and
complete bibliography on parallel sorting is in Richards [421.

3.4.6 Minimum Spanning Tree

The minimum spanning tree problem is interesting because it has several different
solution techniques both for serial and parallel computers. Dee [14] gives several
algorithms for a common memory architecture, the best of which has a time com-
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plexity of O(N * log(N)) for an N processor, N vertex system. Bentley [6] gives
an O(N*log(N)) algorithm for a tree machine of N/(log(N)) processors. Savage
[43] has a N 2 processor algorithm which runs in O(log(N) 2 ). Chang [10,11] and
Yogen Dalal [131 give results for graph-structured parallel architectures, where
the graph of the network is the graph for which the problem is to be solved.

There are several considerations which have a strong influence on how we
can write parallel solutions for the MST problem. The first is a synchronization
problem that occurs when we perform some of the operations in parallel. For
instance, both vertices on an edge might have that edge as their minimum cost
edge. Once one vertex claims that edge, the second vertex cannot use that edge
too. Neither can it simply use its next best edge. The second best edge from
that vertex might or might not be in the tree. Once two vertices share a common
minimum edge, they must cooperate to find new edges. The general rule is that
the edge that is picked must be the minimum of all edges of all vertices which
have merged into a group, to a vertex which is not in that group.

A more subtle possible problem is that if we use a Sollin style "group merging"
based algorithm, groups will merge in decreasing cost chains. Every vertex in all
of the newly merged groups needs to know its "new" group identity so that it can
evaluate its edges for the next merge. We call this propagation of group names
across the network "contagion." The time to resolve the contagion is often the
biggest time penalty for such parallel algorithms.

For our algorithms we also use the techniques of Prim, Dijkstra, Kruskal,
and Sollin. The CAPP algorithm is the only one that uses the Kruskal style
algorithm, and the Full with CAPP machine is the only one which uses the Sollin
style algorithm. All the rest are variations of the Prim/Dijkstra algorithm. Our
algorithms are for connected non-directed graphs. A summary of the running
times of all the algorithms is presented in the next section.

4. Discussion

The details of the running of the algorithms, and their code is reported in [33].
The six problems: broadcast, report, max, pack, sort, and minimum spanning
tree, on each of the machines: CAPP, Linear, Star, BPM, Tree, Shuffle, Full, and
Full with CAPP, give a total of 48 parallel algorithms. These represent a fairly
broad range of computational complexity which we have used for comparison
purposes and as the basis of our analysis of the metrics.

The CAPP and Tree algorithms for broadcast, report, and max are based
on standard algorithms for CAPPs and Tree Machines presented in Foster [19]
and Bentley [5], respectively. The Linear Sort is based on Baudet and Stevenson
[4]. The Shuffle Pack and Full Pack algorithms are based on Schwartz [441. The
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Shuffle Sort and Full Sort are based on Stone's mapping of the Bitonic Sort on the
Shuffle-Exchange interconnect [48, 3]. The rest of the algorithms presented for
these machines and all algorithms for the BPM, Star, and Full/CAPP machine
are new.

We have also included a Serial machine and its times for reference. We define
broadcasting and reporting for the serial machine as simply the act of performing
a memory write or read respectively.

Some of the times in table 2 are given in terms of the value of the maximum
value in the instance of the problem (Max). While this is accurate for the BPM,
for the CAPP it is more correct to use the maximum possible value across all
instances of the problem. Given that we are generally dealing with "almost N
almost unique numbers," we will from now on take the value of N as the value of
Max in our order relations. This follows the accepted practice of other researchers
[53].

Table 2. Running Times of the Algorithms (order approx.)

Machines Algorithms

Broadcast Report Extremum Pack Sort MST

Serial 1 1 N N N log(N) E log(E), N 2

Linear N N N N N N 2

Star N N N N N log(N) N 2

Tree log(N) log(N) log(N) log(N) N Nlog(N)

Shuffle log(N) log(N) log(N) log(N) log(N) 2  N log(N)

BPM 1 1 log(Max) N N N log(N), E

CAPP 1 1 log(Max) N N log(Max) E

Full log(N) log(N) log(N) log(N) log(N) 2  Nlog(N)

Full/CAPP 1 1 1 1 1" log(N)2

4.1 Performance Summary of Diameter and Bandwidth

As we can see in table 2, some of the algorithm-machine performances are
Bandwidth limited, some are Diameter limited, and some are simply not well
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predicted by either Bandwidth or Diameter. We first discuss how Diameter and
Bandwidth can be used to explain the behavior of the machines on the simpler al-
gorithms for broadcast, report, max, ad pack. Then we proceed to an evaluation
of the other metrics and other algorithms.

The CAPP is Bandwidth limited for any operation which involves decision
making. The central control must either "orchestrate" the decisions, as it does
in maximum finding algorithms, or it must do the decisions serially, as it does
for the packing algorithm. The Star machine, also, is severely Bandwidth limited
on all operations. Unless we more fully use the processing power of each Spoke
processor, it is essentially a Serial processor with N words of memory. Our
algorithms were all picked to minimize the processing that each processor would
do, so it is no surprise that we get this result. More complex algorithms do
somewhat better on a Star.

The BPM has a low Bandwidth, but it has the advantage of global commu-
nications. We have defined Bandwidth as the number of unique messages in the
system so it has a Bandwidth of 1. However, for broadcast and report the network
as a whole is really only transmitting (or receiving) one message. So the BPM
does well with its one global message capability. The Star also has a Bandwidth
of 1 but it is not a "global one." For packing the BPM and the Star perform the
same since these algorithms require Oi(N) different messages.

There are no real surprises in the Linear network performance. It is as
diameter-limited as the Star was bandwidth-limited. It also does better on more
complex algorithms. The Tree is also Diameter limited. The interesting facts
come from the coefficients of the order results on broadcasting and reporting.
For broadcasting binary trees are not very good compared to N-ary trees; how-
ever, for reporting they are nearly optimal. For these frst algorithms the Shuffle
Network behaves much like the Tree because it really is designed to be a set of
interlocking trees where each node is a root. We see this is a real advantage on
algorithms with more data movement. The Full interconnect, as expensive in
hardware costs as it is, does not do much better than the Tree and Shuffle net-
works. This is because we have defined send and receive operations to take one

unit of time. As we argued before this is not an unreasonable assumption. The
Full interconnect also does better on harder algorithms.

The Full with CAPP machine, of course, does quite well as a lot more hardware
is dedicated to communication tasks than in any of the other machines. If we
were to call the CAPP an N "processor" SIMD machine, then there are N 2

equivalent processing units in this machine. There are also N broadcast buses
and N receive buses.
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4.2 Diameter, Bandwidth and Time

We can see a relationship between Diameter and Bandwidth for several of our
algorithms:

(Diameter / Bandwidth) * N = time

This is true for the Star, the Linear, the Tree, the Shuffle, and the Full with
CAPP Machines for broadcast, report, max and pack.

This equation reflects the nature of the problems we have chosen to examine
and the way we have defined Diameter and Bandwidth. For broadcasting there
is no constraint on data movement or timing. For reporting and maximum find-
ing there are slight synchronization restrictions. However, all of these functions
have the properties of commutativity, associativity, and replication-insensitivity
or "stability." By stability we mean that adding redundant copies of the input
will not change the computed value.

Packing does not have as many of the nice properties as the other functions.
Its running time on the Linear and Star machines is caused by their Diameter and
Bandwidth restrictions respectively. The Tree algorithm is not really fair since we
pack towards the root, which is not strictly a solution to the problem. Packing
on the Shuffle network is done by taking advantage of its routing properties (48],
which allows it to move data between processors that are far apart in log(N) steps
without collisions or congestion. Packing on the Full with CAPP is so fast for two
reasons. First, only relative positions are involved, and the tagged architecture
removes the data dependency that comes from absolute addressing. Also, the
ability of the Full with CAPP to perform unique operations on each data item is
used.

The equation is not true for the CAPP, the BPM, and the Full Interconnect.
The issue for the Full Interconnect is that each processor cannot examine all N

inputs in unit time. For example, in a report algorithm where everyone sends
to processor 0, even though the messages get to the processor in time O(1) , it

cannot operate on its inputs fast enough. As we showed, the best we can do is
"tree it." The Full with CAPP machine solves the problem by using N broadcast
and N receive buses.

For an explanation of the times for the BPM and the CAPP we are brought up
against our definition of Bandwidth. We have defined it to mean the total number
of different messages in the system. Both of these machines use single global
broadcast buses for all communication. The BPM has one for both broadcast and
report, the CAPP has one for broadcast and another for report. This means that
they will do better than the equation predicts for problems which involve only one
global datum. For maximum finding they both use a radix based solution which
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trades Bandwidth for Diameter. We use an SIMD algorithm which is feasible on
networks with low Diameter. For packing both machines do no better than the
Star, or Serial machines; this reinforces our intuition that their Bandwidth really
is one.

This shows that a global bus is both more powerful and weaker than a full
interconnect. For the case of non-unique messages that need to be sent, or formed
by consensus, the bus is better. Some algorithms can take advantage of this
multiple non-unique message capability. For cases where unique messages are
needed, real point to point interconnect is clearly necessary.

For the BPM algorithms we can take advantage of the implicit synchronization
Lmposed by the communication protocol [31, 321. When there is an underlying
ordering relation on the data, each processor can "make assumptions" on the val-
ues in other processors. These inferences can be based on what was not broadcast
at a given time. We use this technique to sort with 100% efficiency; every value
is mentioned exactly once in the process.

The BPM algorithms illustrate an important point about communication in
multiprocessors. Communication and synchronization are really two aspects of the
same coordination problem. In fact, synchronization is really just a special type
of communication, where "control information" is sent rather than just "data."

Broadcast, report, max and pack are really not as communication intensive
as other problems. These problems only require us to handle each data item once
during the computation. Other problems, like sorting and the minimum spanning
tree, often require that data items be moved and compared and moved again
many times during the course of the algorithm.

4.3 Message Capacity Metrics

The rationale for our Message Capacity metrics is to capture the phenomena
which lead to congestion and competition in network-based multiprocessors which
cannot be described by Diameter or Bandwidth.

Diameter and Bandwidth are good metrics in the sense that they are easy to
compute precisely and give hard bounds on performance. However, they do not al-
ways give tight lower bounds. Diameter gives bounds on the possible performance
of algorithms which must move data from one "end" of the multiprocessor to the
other. Bandwidth gives us a bound on how much data can be exchanged between
processors during a computation. However, neither metric captures interference
phenomena like the congestion near the root node in Tree networks. They do not
predict well the running times for more sophisticated tasks like sorting.

This is not surprising. The information flow needed during sorting cannot be
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simply characterized. Sorting is more than sending a message down the length of
the network or collecting a datum from each processor. There must be patterns
of exchanges: in some cases fixed, in some cases data dependent. The data
movement itself must not be "serialized" by the constraints of the network. This
is really the crux of the matter. The weakest link of the chain (or network) is the
rate-limiting factor. By weakest we do not mean non-homogenous processors. It is
their position in the network which makes different demands on their equivalent
resources. As we see later, the Worst-Case Path metric is the one which best
characterizes the requirements of sorting and the minimum spanning tree.

The Message Capacity metrics do capture the actual ability of networks to
support high data traffic. However, they are not "fine grained" enough to really
bound any particular algorithm. This is as much a result of our lack of under-
standing of the data movement pattern of algorithms as it is a shortcoming of the
metrics.

5. Evaluating the Metrics

Evaluation of metrics is a subjective task. Different metrics are useful for
abstracting different aspects of machine architecture, which in turn impose varying
constraints for each algorithm. The values of the metrics were given in table 1.

The quality of the metrics as predictor8 of algorithm performance varies even
more than their usefulness in establishing lower bounds. For instance, on the
basis of Diameter alone we can set lower bounds for some algorithms on some
machines; but Diameter tells very little about actual performance. Diameter is a
very good predictor of algorithms on architectures which are "Diameter bound"
like the Linear machine; however, it is a bad predictor of algorithms on other
machines that have more severe constraints in their Bandwidth or Worst-Case
Path Count.

We perform the evaluation of the metrics by defining a quantitative measure
of how well the metrics can be used as predictors of algorithm performance. We
rate the metrics by comparing their ability to rank our machines in the same order
that the algorithms performed. We claim that this indicates how well they have
captured the communication abilities of the machines to support real algorithms.

Our rating is done by a Rank Order technique [2]. First, we rank the machines
by their performance on each algorithm. This is shown in table 3 where the
machines are in "best-to-worst" order. We combine the broadcast and report
rankings since they are the same. The horizontal lines indicate a change in running
time, e.g., the Full-CAPP machine finds Extremum in 0(1) but the Full, Shuffle,
Tree, CAPP, and BPM machines take O(log(N)).
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Next, we rank each machine by each metric as is shown in table 4. Again,
horizontal lines indicate a change of value. We combine the Total and Average
Path Counts and the Thickness and Narrowness rankings since these are the same.
We use these two tables to generate our values of how well the metrics' ranking
of the machines predicts the algorithm performance ranking of machines.

Table 3. Relative Ranking Machines by Algorithm Performance

Broadcast/Report Extremum Pack Sort MST

Full-CAPP Full-CAPP Full-CAPP Full-CAPP Full-CAPP

CAPP Full Full Full Full
BPM Shuffle Shuffle Shuffle Shuffle

Full Tree Tree Tree Tree

Shuffle CAPP CAPP BPM BPM

Tree BPM BPM Linear CAPP

Star Star Star CAPP Linear
Linear Linear Linear Star Star

Table 4. Relative Ranking of Machines by Metrics

Bandwidth Diameter Total/Average Worst Case Thick/Narrow
Full-CAPP Full-CAPP Full-CAPP Full-CAPP Full-CAPP

Full Full Full Full Full

Shuffle Star Star Shuffle Shuffle

Tree CAPP CAPP Star Star

Linear BPM BPM CAPP CAPP

Star Shuffle Shuffle BPM BPM

CAPP Tree Tree Tree Tree

BPM Linear Linear Linear Linear

We do this by giving points to each metric for correct predictions on the
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ordering of each machine by each algorithm. We give each metric a point for each
pair-wise relationship among machines that it predicts. In the rank order of the
machines one is either "better than," "equal to," or "worse than" every other
machine. This gives us N * (N - 1)/2 possible relationships to get right; with
eight machines a perfect score would be 28 for each algorithm.

As an example, the Thickness metric ranked the eight machines in the follow-
ing order: Full-CAPP and Full, best at N 2 ; Shuffle and Star, N; then CAPP,
BPM, Tree, and Linear, 1. To see how well Thickness predicts sorting we com-
pare that ranking to the sorting algorithm rank of Full-CAPP, best at 1; Full and
Shuffle, log(N) 2 ; Tree, BPM, and Linear, N; CAPP and Star, N * log(V). We
show this in table 5.

Table 5. Example Evaluation of a Metric

Thickness Sorting Points

Full-CAPP Full-CAPP 6

Full Full 5

Shuffle Shuffle 4

Star Tree 2

CAPP BPM 1
BPM Linear 0

Tree CAPP 0

Linear Star 0
Total Points - 18

The points are computed as follows. Sorting ranked the Full-CAPP machine
as better than all others; Thickness ranked it better than six machines but equal
to the Full machine. It got six (out of seven) relations right, so we give Thickness
six points on that line. For the next line, sorting ranked the Full machine equal to
the Shuffle machine and better than the rest. Thickness ranked the Full machine
as better than all six of the other machines. It got five (out of six) relations right,
so we give it five points for that line.

On each line, we only look down the list so that we do not count relations
twice. We accounted for the relation between the Full-CAPP machine and the
Full machine on the first line so we need not consider it again.

Moving down the table we give four points for the fact that Thickness pre-
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dicted the Shuffle machine would be better than the Tree, BPM, Linear and CAPP
machines. It missed the relationship of the Star machine to the Shuffe machine.
It gets two points for predicting that the Tree machine would do as well as the

BPM and the Linear machines, and we give it one point for grouping the BPM
machine with the Linear machine. It gets all the other relationships wrong.

The total score for the Thickness metric to predict the ability of our parallel
architectures to sort is 18 out of 28. Carrying out the same calculation for each
of the metrics and each of the algorithms gives us the results in table 6. For
comparison, a Monte Carlo estimate of 10,000 trials between pairs of random
rankings of eight items (each divided into three groups) gives an average value of
9.8.

Table 6. Comparative Evaluation of Metrics

Metrics Algorithms

Broadcast/Report Extrema Pack Sort MST Average Rank

Diameter 16 12 10 7 10 11.00 4

Bandwidth 8 10 18 16 13 13.00 3

Total/Avg Path 14 10 8 7 8 9.40 5

W-C Path 10 14 20 20 18 18.00 1
Thick/Narrow 8 12 16 18 13 13.40 2

This rank-order based evaluation method has two nice properties. First, it
only uses the relative values of both the metrics and the running times. We do
not have to normalize any values. Second, it gives credit for "clustering" of the
machines in the predictions. It does not penalize a metric too much for getting
one relation totally wrong and thereby ruining the absolute order of the lists. For
instance, if three machines were predicted to perform the same and they did, the
metric gets credit for the "equal to" relations even if the rank of all three machines
was wrong,

Table 6 illustrates several important points about the metrics. Diameter is
a reasonable predictor of broadcast and report, but not very good at predicting
the other algorithms. Bandwidth, on the other hand, is better at predicting the
pack, sort, and MST algorithms. Both Total and Average Path Counts do poorly.
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However, the Worst-Case Path Count is the best metric for predicting all the
algorithms except broadcast and report. Thickness and Narrowness are tied for
second place among the metrics.

The next to last column of table 6 shows the average prediction ability of each
of the metrics. As above, a 28 would be a perfect score. The last column gives
the relative rank of the metrics as predictors.

6. Conclusions
6.1 Algorithms as Metrics

Since broadcast and report are primitive to very many parallel processing
tasks, we are lead to consider using the machine running times for these algorithms
as metrics themselves. We have extended our comparison of metrics to include
all our algorithms, as metrics for predicting machine performance (table 7).

We can see that, without exception, every algorithm is a better average pre-

dictor than any of the metrics in table 6. The average values in table 7 do not
include the ability of an algorithm to predict itself. The minimum spanning tree
algorithm is the best predictor. We believe this is because most of the programs
written for the MST were made up of applications of the other algorithms as sub-
tasks. In the next section we build on these ideas and propose a "performance
suite" 'or parallel architectures.

6.2 A Performance Suite

In another age of Computer Architecture, architects designed "Business Ma-
chines" and "Scientific Data Processors" and pretended that those machines
needed to be different. People soon discovered that the basic operations of ma-
chines were really the same no matter what "high level" operation they were doing.
They Moved data, Operated on data, Branched, Saved and Restored state.

Even though the "operate on data" aspect of computer design can be very
complex, it is conceptually a single function of the machine. People are redis-
covering this phenomena with such architectures as the Reduced Instruction Set
Computer (RISC) architecture [161.

This is not to say that machines should not support high level operations.
Rather that even when they are supporting high level functions, they are doing it

by the same basic operations listed above, no matter if it is done in macro-code,
micro-code, or even "nano-code."

In this respect, multiprocessors are not so different from uniprocessors. Not
only are each of the processors that make up a multiprocessor performing the basic
operations, but the parallel processing machine as a whole is also performing those
same operations. Here we are not talking about a random collection of computers
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Table 7. Evaluation of Algorithms and Metrics as Predictors

Algorithms Algorithms

Broadcast/Report Extrema Pack Sort MST Average Rank

MST 17 22 22 20 - 20.25 1

Pack 16 18 - 20 22 19.00 2

Extrema 20 - 18 15 22 18.75 3

Sort 12 15 20 - 20 16.75 4

Broadcast/Report - 20 16 12 17 16.25 5

W-C Path 10 14 20 20 16 16.00 6

Thick/Narrow 8 12 16 18 13 13.40 7

Bandwidth 8 10 18 16 13 13.00 8

Diameter 16 12 10 7 10 11.00 9

Total/Avg Path 14 10 8 7 8 9.40 10

connected together, although we could even make the argument for that case, but
a homogenous multiprocessor which is performing a single task.

Looked at in this context our work has simply expanded on the basic machine
operation "Move Data" to reflect the possible complexity involved.

Following this thought, a set of "Universal" tasks should be appropriate to test
the relative merits of multiprocessors. This set should contain a representative
mix of communication patterns in much the same way that the Gibson [23] mix
of operations is useful as a universal test for the "operate" group of instructions.
This idea of a set of test cases is not new [37]; rather, it is time to extend these

ideas to parallel architectures.

It is clear from our work that the fundamental operations of broadcasting
and reporting should be included in this mix. Additionally, we have seen that
sorting, as the general extension of routing, is also a fundamental operation.
Our experience with packing and the minimum spanning tree has shown that
not only is data routing important, but also data-dependent decisions need to be
considered. This is reflected in the serializations caused by the dependencies in
packing and the contagion in the minimum spanning tree. Although these two
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tasks are not themselves universal, they do seem to encompass important aspects
of interprocessor communication.

We propose the following tasks be used as a "Performance Suite" for evaluating
the communication structures of parallel architectures:

" Broadcasting - - This is essential for any machine to support coordination of
tasks. We need to broadcast simply to initiate most algorithms.

" Reporting - - Similarly, reporting is necessary for coordination and control.

" Selecting - - Maximum Finding or other "stable" functions which collect data

from all nodes. Summing and other functions which are commutative and
associative but not stable might be as good. The stable functions were easier to
program, but their running times were not any faster than the corresponding
non-stable functions would be.

" Sorting - - Routing and sorting reflect the machines abilities to support arbi-
trary communication patterns. This is the same as supporting all permuta-

tions.

" Propagating (Contagion) - - Packing or the Transitive Closure of a graph
would all test the same abilities.

* Saturating (Many to Many) - - This is the task of each processor sending a
message to every other processor. This measures bottlenecks or congestion in
the machine.

There are many other possible tasks which could be included in such a mix
besides these six. These are well documented in this paper and in the literature.
We leave it to others to define the "ideal" set.

6.3 Future Work

As discussed in the Introduction, the ultimate goal of this research is to de-
velop a theory of parallel complexity. We believe that a step towards that goal is
a characterization of the communication structures of parallel architectures and
the communication needs of parallel algorithms. Our goal has been to generate a
set of metrics useful in this characterization. We have performed the exercise of
solving a representative set of problems on a group of parallel machines and have
discussed the techniques involved in writing those algorithms. We hope that this
work will lay a foundation for describing the communication structures of parallel
machines which is necessary for a usable theory of parallel complexity theory.

We propose that, until there is such a theory, an empirical approach is pos-
sible and desirable. This approach could be based on comparative studies of
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machine performance on a suite of algorithms. This would allow us to continue
our exploration of parallel architecture communication structures.
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